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The concept of disproportionation or dismutation has
been frequently used to analyze the stability of intermedi-
ate oxidation states of different elements; nevertheless, it
has only been used sporadically (usually in a relatively
nonsystematic fashion) in processes without electron ex-
change. A recent paper in this Journal explains the con- -
struction of predominance-zone diagrams (PZD’s) as an
important aid for the comprehension of aqueous solution
chemistry by using a general donor/acceptor/particle treat-
ment (I). However, the dismutation concept is not dealt
with in this reference.

In this paper we show the application of the concept of
dismutation in nonredox processes and its relationship to
the corresponding chemical-species distribution diagrams
and PZD’s. During the past few years, we have used this
approach in analytical chemistry courses for students ma-
joring in chemical engineering, chemistry, pharmacy, and
biochemistry with gratifying results at the Universidad
Nacional Auténoma de México as well as at the Universi-
dad Auténoma Metropolitana-Iztapalapa.

Distribution Diagrams and the Predominance
of Chemical Species

Systems of the Type MLy/..../ML/M/L

In aqueous solutions containing two components, M and
L, the chemical species,

ML, MLy, ML, ..., ML,

can be produced by the following formation equilibria,

ML, + (j - )L = ML (1

with an associated equilibrium constant,
L.U-0L _ [MLj]
ML T G-i)
4 [ML;IL)
ie0,1,2,..,(G-D}, je {1,2, .., n}

This notation includes successive and overall equilibria
{2). Other formation equilibria that are useful in some
cases are also included.

Taking logs on both sides of this equation and solving for
pL (defined as pL = -log [L]), one obtains the following
Henderson—Hasselbalch type of equation.

2)

g ML)
log (K%I;{"’")L)+ 1 log [[_N_ﬁj] (3)
4

1
L= G-
In Charlot’s nomenclature (3), ML, is the polydonor spe-
cies in the system; M is the polyacceptor; ML, MLo, ...,
ML;-1) are the ampholytes; and L is the particle. A com-
mon, well-known graphical representation for this type of
systems is a plot of the molar fractions of the species con-
taining M vs. pL. This is called a chemical-species distribu-

tion diagram (4, 5).

)

Molar Fractions of the Species

The equations of the molar fractions of the species of M
depend on the concentration of L as follows.
fu= M]
M= M) + [ML] + [ML,) + ... + [ML,]
1
1+ KL+ Kig (L + .. + Kigy, LT

)

Table 1. Overall Formation Equilibria and log Values of their Equilibrium Constants for the Systems Used

logp  Ref

System Equilibrium log B Ref System Equilibrium
Cu(ll)-NHs Cu?* + NHz = Cu(NHa)?* 4.10 6 | Zn(I~NH, Zn®* + NH, = Zn(NHg)?* 240 6
Cu® + 2NHg = Cu(NHp)3" 7.60 Zn?* + 2NH, = Zn(NHp2* 2.30
Cu®* + 3NH, = Cu(NHg)3" 10.50 Zn?* + 3NH; = Zn(NHg)2" 2.60
Cu?* + 4NH, = Cu(NHp2* 12.50 Zn®* + 4NHy = Zn(NHp)3" 2.10
Proton—phosphates. po2-+ H" = HPOZ" 12.34 6 | Mn(ll)-oxalates Mn?* + Ox*" = MnOx 240 7
POS +2H* = H,PO; 19.54 Mn2* + 20x%” = Mn(OX)3~ 5.66
POS +3H" =H,PO, 2168 Mn?* + 30x%” = Mn(OX)3™ 6.00
Ag(l)-NH, Ag® + NHg = Ag(NH,)* 3.30 6 | Fe(ll)~(o-phen) Fe®* + o-phen = Fe(o-phen)®* 5.84 7
Ag" + 2NHg = Ag(NHy); 720 Fe?* + 20-phen = Fe(o-phen)3’  11-20

Fe?* + 30-phen = Fe(o-phen)3”  21-30
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Figure 1. Chemical-species distribution diagrams for some metal cat-
jon systems as a function of pNH. () Cu(ll)-NHg. (b) Zn(ll)-NH3. (c)
Ag(l)-NH,. (M fraction of M, A fraction of ML, x fraction of ML, O
fraction of ML, and A fraction of ML,. The PZD’s above each distri-
bution diagram are obtained by projecting the intersection points of
the greatest fractions over the pNH; scale.) :

and

e
P, = T+ v LY )
ieil,2,..n)

These functions are monotonic with respect to [L] (or to
pL) for the polyacceptor as well as for the polydonor be-
cause the functions in their denominators are polynomials
containing only integer exponentials (positive for M, nega-
tive for ML,). However, the functions for the ampholytes
present a maximum because here each polynomial pre-
sents integer exponents that are both positive and nega-
tive when the expression is simplified with the numerator.
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Figure 2. Distribution diagrams and PZD’s for systems of the type
MLy/ML/M/L. (a) Limiting case, where logkh-> << log K or

log Kty << 0. (b) Case where log Kk = logKit or log M =0.
(c) Limiting case where log Ki:- >> log Kt or log Koy >> 0. (W
fraction of M, A fraction of ML, and x fraction of ML,.)

When the fraction of ML; is larger than that of all the
other species that contain M, then ML is said to predomi-
nate in the system. The chemical-species distribution dia-
grams shown throughout this paper can be easily con-
structed by introducing eqs 4 and 5 in a spreadsheet (e.g.,
Excel 4.0, Microsoft) and using equilibrium constants Te-
ported in the literature (6, 7). Table 1 shows the values of
the equilibrium constants of the systems discussed in this

paper.



Table 2. Dismutation Equilibria of the Ampholytes
in the Systems

Proton-Phosphates, Manganese(ll)-Oxalates (Ox)
and Iron(ll)-ortho-Phenanthroline (o-phen)
with Corresponding Values of the log of the Equilibrium Constants

Amphoilyte Dismutation Equilibrium log K
HPO,2 '2HPOZ = H,PO; + POS -5.1
3HPOZ™ = HyPO, + 2POY -15.3
H,PO,” 2H,PO; = HyPO, + HPOZ™ -5.1
3H,PO; = 2H,PO, + PO -15.3
MnOx 2MnOx = MnOx2™ + Mn?* 0.8
3MnOX = MnOx3~ + 2Mn2* -1.2
MnOx,*" 2MnOX3™ = MnOX§™ + MnOx -29
' 3MNOX3™ = 2MnOX3™ + Mn?* -5.0
Fe(o-phen)® 2Fe(o-phen)®* = Fe(o-phen)2* + Fe®* -05
Fe(o-phen)®* = Fe(o-phen)3* + 2Fe® 3.78
2Fe(o-phen)” = Fe(o-phen)a’ 47
+ Fe(o-phen)?
Fe(ophen),™  3Fe(o-phen)2’ = Fe(o-phen)2” + Fe?* 9.0

In Figure 1 some distribution diagrams of metallic cat-
ions (Cu(II), Zn(II), and Ag(I)) with ammonia are shown. In
the case of copper, all of the species can predominate in a
given pNHs interval. On the contrary, in the cases of silver
and zinc the species monoamminesilver and diamminezince
cannot predominate anywhere even though they are pre-
sent in the system; thus it cannot be said that they do not
exist.

Although this type of system (where not all the existing
species have a predominance zone in the pL scale) is not
considered in the paper mentioned above (1), PZD’s can be
constructed for them. Suffice it to observe the pL interval
for which the fraction of one species is larger than any
other in order to construct the PZD of M-containing species
in the system.

The Points of Intersection

The points of intersection of the fractions of the species
ML; and ML; are given by the values of '

=1 HG-HL
pL=—7log K
according to the Henderson-Hasselbalch type of equation.

The upper part of Figure 1 also shows how the. PZD’s of
the Cu(l), Ag(I), and Zn(II) systems can be obtained as
projections of the intersection points of the largest frac-
tions on the pNH3 scale. At these points, the molar frac-
tions of the predominant species become equal. Vale et al.
(1) call these points acceptance potentials; they mark the
predominance boundaries of the chemical species. Al-
though PZD’s can be constructed this way, this method
does not show why some ampholytes cannot predominate
in the system.

Dismutation Equilibria and Ampholyte Stability

Ampholytes can react both as particle donors and ac-
ceptors; this enables them to react with themselves under
some circumstances. Charlot (3) has pointed out that it is
useful to include the dismutation of ampholytes to simplify
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Figure 3. Sample distribution and PZD'’s for systems of the type
MLyMLy/ML/M/L. (a) proton—phosphates, (b) Mn(il)-Ox, {c) Fe(ll)-
(o-phen). (W fraction of M, A fraction of ML, x fraction of ML,, and
O fraction of ML3.)

the analysis of polydonor/ampholyte(s)/polyacceptor/parti-
cle systems. This is shown below.

Two-Particle Donors (MLa/ML/M/L)
Here, there is only one ampholyte (ML) with one dismu-
tation equilibrium. .
2ML = ML, + M (6)

and with an associated equilibrium constant given by

M

K- 20 o

Two possibilities arise from this: Either the ampholyte
can predominate in the system (Fig. 2a), or it cannot pre-
dominate (Figs. 2b and 2c¢). This information can be ob-
tained from the value of the dismutation constant of the
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Figure 4. Placement of the successive donor/acceptor pairs of differ-
ent systems according to the points a, b, and cof Charlot’s convention
(3). (a) proton-phosphates system on the pH scale, (b) Zn(H)-NH3
system on the pNH; scale, (c) Fe(l)-{o-phen) system on the p(o-
phen) scale. The dotted diagonal arrows signal ampholyte dismuta-
tion processes with equilibrium constants greater than 1.

ampholyte, as shown in Figure 2. Then, in this type of sys-
tem ML can predominate in some interval of pL values if
and only if

log K=< 0 ®

For example, the system Ag(I)>NHs has an ampholyte
with a dismutation equilibrium,

2Ag(NH3)+ = Ag(NH3)2+ +Ag"
and an equilibrium constant,

Kzﬁg(NHs): ‘e [Ag(NHg)llAg"]
gNHa)z,Ag [Ag(NI_Ia).,,]z

obtained from Hess’ law by using known equilibrium con-
stants shown in Table 1. Because this dismutation constant
is greater than unity, the ampholyte cannot predominate
(Fig. 1¢).

Three-Particle Donor Systems (MLa/MLo/ML/M/L)

Here, there are two ampholytes (ML2 and ML). Each one
participates in two different dismutation equilibria. Table
2 shows the possible dismutation equilibria for the ampho-
lytes in three selected example systems: phosphoric acid,
Mn(II)-oxalate and Fe(Il)-o-phenanthroline . The corre-
sponding distribution diagrams are shown in Figure 3.

The information in Table 2 and the shape of the distribu-
tion diagrams in Figure 3 show that if at least one of the
dismutation constants of a given ampholyte is greater that

=10%6>1
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Figure 5. Graphical representation of dismutation equilibria of the

type 2ML;= ML,y + ML) according to Charlot's convention for the
prediction of reac{ions (3). (a) The ampholyte ML, dismutates with

log Kw—;{wmo—n >0 and thus cannot predominate in the system. (b)
L . - - ;
The ampholyte ML; dismutates with log Kﬁ._V/MMLU_”_O and thus

cannot predominate in the system. (The lines joining the donor/ac-
ceptor pairs must bend because both pairs are located at the same

point.) (¢) The ampholyte ML; dismutates with log Kf,'{’(';iwm_w <0
and can predominate in the interval log KMMt{:“ <plL<log KM‘_}I‘-‘)’".

The donor points toward the acceptor, and they produce their corre-
sponding conjugated products. The short and thick arrows define the
direction of the vector, which is defined by the sign of

ML,
log l"w”'-u-n'
unity (i.e., log K > 0), then that ampholyte cannot predomi-
nate in the system. ’

Multiparticle Donor Systems (MLa/.../ML/M/L)

In general, for multiparticle donor systems there are
(n — 1) ampholytes with dismutation equilibria of the type,

(k - HML; = ( - MLy, + (&~ HML; - 9)
and their equilibrium constants are written as
. [M]_k](f-i)[m,](k-j)
h—i)ML:
K((j—i))l\dL;,’,(k-j)MLi = —m— (10)

ie0,1,2,..,¢G-1}
Jje{1,2, .., (n-1)}
ke l(j+1),(+2),..,n}



It is relatively easy to demonstrate that in this general
case, the ampholyte ML; can have up to j(n - j) different
dismutation processes; this can be shown by counting the
number of species before and after this ampholyte, accord-
ing to the following sequence.

M, ML, ..., ML(}"‘D, MLJ’ MLG“'I)’ veey MIJn
J species (n - j) species

In this way, the total number of different dismutation
processes (NDP’s) is equal to the sum of the individual pos-
sible dismutation processes of each ampholyte.

n-1 n-1 n-1 .
NDP=Y jn-j=nYy j-3 /= "(ne L) 1)
=1 J=1 J=1
Only (n ~ 1) dismutatjon equilibria can be used to gather a
set of n independent equilibria (8) to thermodynamically
describe these systems.

In addition, as a general rule, an ampholyte cannot pre-
dominate in a system where at least one of its dismutation
constants is greater than or equal to 1. For this reason,
dismutation equilibria can be considered as stability crite-
ria of ampholytes.

Charlot’s Scale for the Prediction of Reactions

The calculation of the constants of all the dismutation
equilibria present in a given system to determine which
ampholytes cannot predominate could become cumber-
some; the total number of equilibria could be very large.
For example, for a hexadonor system of the type

MLg/../ML/M/L n=6

there are 35 different dismutation equilibria, according to
the calculation described above (eq 11). For this reason,
Charlot (3) and Trémillon (9) devised a graphic algorithm
that facilitates the successive and exhaustive selection of
only the dismutation equilibria of ampholytes that cannot
predominate in the system. We now describe the conven-
tion for Charlot’s scale for the prediction of reactions and
its application to the construction of PZD’s. .

Charlot’s Convention for the Scale for Predicting
Reactions as Applied to Construction of PZD’s

a. Scale

The scale for the prediction of reactions is a linear pL
scale.

b. Positioning a Donor/Acceptor Pair on the Scale

The conjugated donor/acceptor pairs like those of eq 1
are placed on the pL scale at the point where [ML;] = [MLj]
because this implies that

L= —
PL=T

according to the Henderson—Hasselbalch type equation (eq
3). Donors are placed on the upper part, and the acceptors
are on the lower part. Then, the placement of this pair on
the scale looks like

MLj

v

ML G-)L pL
Q_,) ‘*’ﬁ"m.j

ML;

Here, ML; is the conjugated donor of ML; (1, 10, 11). In
order for this scale to have a practical application, it is nec-

essary to establish the type of pairs that must be placed on
it.

¢. Use of the Scale for a Polydonor System

of the Type MLy/../ML/M/L

¢.1 Placement of the Successive Donor | Acceptor
Conjugated Pairs. Each pair of the set of independent
successive equilibria (ML(_;, + L = ML) is placed on the
scale. The Henderson—Hasselbalch type equation used for
each donor/conjugated acceptor pair is

Lt [ML,_,]
= Lg-1),L G-1).
pL=log KMLJ_ +log( ML) ]

Then, when [ML(;_ 1] = [MLj],

pL=1log KMLU-U L

For Brinsted acids and bases, pKa values (that corre-
spond to successive dissociation equilibria) are usually re-
ported; whereas, log B values (that correspond to global for-
mation equilibria constants) are reported for coordination
compounds. For this reason, care must be taken when us-
ing these data. Hess’ law can be used when necessary to
obtain successive constants from global constants and vice
versa.

Figure 4 shows some examples of the placement of suc-
cessive formation equilibria in different systems. As
shown, the successive formation equilibria of the proton—
phosphate system follow the statistically expected order
(12), that is,

log Kyp2™ < log Kt < log K

ML ML, ML
I logl("he;l' logl(::l"l' pL
MI: ML M
In the system Zn(II)-NH3,

log Kﬁfﬁ“ <log KMmL_'ZL <log KML2 < log KM

ML, ML, ML, ML
losK:gf L |I ogK:g;,L '°8Km5 M L 'pL
ML, ML ML, M
In the system Fe(II)—(o-phen),
log Kﬁi;‘ <logKM" <log M&‘L
MLy
| - | l 47
||og1<,mn L ok || M2 L oL
M Mlz
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Figure 6. Simplification of the scale for the prediction of reactions of
the system Zn{ll)~-NHg according to the points d and e of Charlot's
convention (3. (a) Initial scale. (b) First and last scale simplification.
(Dotted arrows show the assignment of species to their respective
predominance zones.)

These graphical representations, developed from the
convention points described above, show some chemical
reactions and the log values of their equilibrium con-
stants as well as some dismutation equilibria that are de-
scribed below. ’ ’

¢.2 Dirécted Distance. It is well-known that the log
value of the equilibrium constant of the following dismuta-
tion equilibria,

2MLJ = ML(i*l) + ML(i—l)

can be obtained by using Hess’ law and combining the cor-
responding successive equilibria as follows.

log K = -logKyrsv -

log K =+og KNI,

MLJ = ML(i—l) +L

ML; + L = ML1,

2Zn(NH,),2* = Zn(NHj);2* + Zn(NHp?*
is greater that 1 and so is that of the dismutation,
9Fe(o-phen)y?* = Fe(o-phen);>* + Fe(o-phen)®*

according to Figure 4c.
d. PZD’s from the Scale of Prediction of Reactions
From here, two possibilities arise.
d.1 All the dismutation constants corresponding to the
equilibria of the type
2ML = MLy, + MLgi1,

- (named here as stoichiometry 2:1:1) are less than 1. Thus,
all the ampholytes can predominate according to the sta-
tistically expected order shown below. ) :

Then, the PZD is as follows.

MLn , ML(n—l) . MLZ . ML . M R
1 7/ T T ‘p'L
M
%-lyb |og]é;:tz'l- thM L

d.2 One or more dismutation constants of 2:1:1
stoichiometry, represented on the scale, are greater than 1.

In these cases, a simplification prbcedure must be used
to obtain the corresponding PZD, as explained below.

e. Simplification of the Scale for the Prediction of Reactions

e.1 Identification. Among the ampholytes with equilib-
rium constants greater than 1, the most unstable—that is,
the one with the largest dismutation constant (e.g., ML;)—
is selected.

e.2 Substitution. Those pairs containing the most un-
stable ampholyte, ML, are removed from the scale and sub-
stituted with the pair that involves the products (ML; and
ML,) from the dismutation equilibrium that prevents ML;
from predominating in the system (3, 9).

e.3 Exhaustive Repetition. Points e.I and e.2 are then
_repeated until there are no more ampholytes in

the scale with dismutation equilibrium con-
stants greater than or equal to 1 or until there
are no more ampholytes there.

2MLJ = MLU+1) + ML(]'_I)

The sign of the term,
log Kl%‘ﬁn““@-n
depends upon the values of
tog KB,
and
log Kﬁq—wl‘

Because successive equilibria have been graphically rep-
resented at pL = log K, with the donors on the upper side
and with the acceptors on the lower side, the values of
log KMMMLU—D and their signs have also been repre-
sented, as shown in Figure 5. Here, it is also shown that
this convention defines directed distances among the
pairs; it defines vectors. So this scale is just a graphical
representation of Hess’ law like any other graphical
method of prediction of reactions (13, 14). Then, Figure 4b
shows that the equilibrium constant for the dismutation,
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ML, L Ly L
log K%«L}Zl, ML, = +1°gK§44LLJW) ~logKre-v

e.4 PZD’s. The PZD is then constructed from
the simplified scale, following the statistically
expected order for the predominance of species.
An example of a PZD thus obtained is

ML, ML; ML, ML, M
1 l « / 1 ' L23L 1I M 2L p'L
An-fL 2 0
@5 s T L

Figure 4a shows that it is not necessary to simplify the
scale of the system proton-phosphates. Figures 4b and 4c
show that it is necessary to use the procedure described
above for the systems Zn(II)-NH3 and Fe(Il)~(o-phen). Ex-
amples of the simplification procedure described above
(i.e., point e of the convention) and the corresponding
PZD’s are given in Figures 6 and 7. The simplification prog-
ess in Figure 6 is stopped when the ampholyte Zn(NHa)e**
is removed from the scale for the prediction of reactions
because all the constants of the dismutation equilibria of
the other two ampholytes (Zn(NHs3)** and Zn(NHz3)3*) are
less than 1.0n the contrary, the scale for the system
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Figure 7. Simplification of the scale for the prediction of reactions of
the system Fe(ll)-(o-phen) according to the points d and e of Char-
lot's convention (3). (a) Initial scale. (b) First scale simplification show-
ing the dismutation of the ampholyte Fe(o-phen)z“. (¢) Second and
last scale simplification. (Dotted arrows signal the assignment of spe-
cies to their corresponding predominance zones.)

Fe(II)-(o-phen) must be simplified twice, as shown in Fig-

ure 7. This can be understood in the light of the above dis-

cussion by looking at the corresponding data in Table 2.
In Figure 7b the dismutation equilibrium constant for

%Fe(o-phen)?* = Y4Fe(o-phen)3” + Fe>*
(not plotted in Figures 7a nor 7c) is greater than 1,
2+
log Kiffeio Bhen)z" pe* = 189> 0
Then, the constant for the equilibrium 3Fe(o-phen
Fe(o-phen)g+ + 2Fe®* (which represents the same dismuta-
tion process) is also greater than 1,
2+
logK R bhene” ore?* = 3.78> 0
In the simplified scales for the prediction of reactions
that appear along the procedure outlined in point e of the
convention, some of the dismutation processes thereby
represented no longer have a 2:1:1 stoichiometry. Care

must be used with the interpretation of the dismutation
processes represented in the simplified scales.

)2+ =

Observations

Charlot’s convention for the scale for the prediction of reac-
tions is more comprehensive and powerful than we have
shown in this limited space because the pL scale contains
more than the dismutation equilibria, that is, other reaction
equilibria among donors and nonconjugated acceptors not
discussed here. The directed distance (defined in points ¢ and

b of the convention) is applicable to other equilibria in addi-
tion to the dismutation cases discussed here.

Other points of the convention (not treated here) allow
for the placement of the particle L on the pL scale as well
as for the overlap of all the necessary reduced scales in
order to describe the composition of the solution. This en-
ables the prediction of reactions in polydonor systems that
exchange the same particle L, for example,

ML,/...ML/M/L, AL,/../AL/A/L, BL,/../BL/B/L

This leads to adequate models for the calculation of equi-
librium compositions in systems involved in processes
such as titrations, hydrometallurgy, biochemistry, and
processes in aqueous solutions in general (3, 9).

The complete Charlot’s convention is not presented here
due to space limitations and because our main objective is
to emphasize the importance of the dismutation processes
in the construction of PZD’s. We have used Ringbom’s no-
menclature (15) for the labeling of the different equilib-
rium constants in an attempt to use one single convention
because the IUPAC has not established a convention for
writing equilibrium constants of dismutation processes.

Conclusions

The main contribution of the concept of dismutation
equilibria as applied to solution chemistry is that it ex-
plains the nonpredominance of some ampholytes in a given
system. The use of these equilibria combined with another
graphical method of prediction of reactions (3, 9, 13, 14),
can lead to the construction of PZD’s without having to use
the corresponding chemical-species distribution diagrams.

The PZD’s discussed here (and earlier (1)), describe two-
component systems. Actually, real-life chemical processes
usually involve more than two components; nonetheless,
the algorithm discussed here can be generalized for multi-
component, multireacting systems in aqueous solutions by
considering the formation of mixed complexes (16, 17),
polynuclear species (18), condensed-phase equilibria (19,
20) and electron exchange (redox systems) (21).
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